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IS~ABSTRACT"

In this report the detection and estimation of closely

spaced optical targets are studied using simulation. The

observed signal which originates from two point targets may ex-

hibit Oý ,!y'qne apparent , peakowhen they-are..located within one

detector width. The Akaike information criterion and a maximum

likelihood estimator are used to detect and estimate such unre-

solved targets. For target separation between 3/4 and 1 detector

width the detection rate is high, the estimator is unbiased and

the estimation variance is close to the Cramer-Rao bound. The

performance degrades greatly when the separation becomes smaller.

This loss in performancs is attributed to the increasing inter-

ference between the two targets and the difficulty in providing

a "good" initial guess for the estimator*
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i. INTRODUCTION

In the hierarchy of BMD (Ballistic Missile Defense) systems

functions, closely spaced object (CSO) resolution occurs early in

the sequence of events and consequently influences the performance

of the subsequent functions to different degrees. It is,.very im-

portant to assess the CSO resolution capability of the sonsor

systems employed in every BMD system study before one can determine

the overall BMD system performance. The CSO resolution capability

is clearly dependent upon the sensor system and the threat charac-

teristics considered in the BMD system study. Current attention has

been focused on a variety of passive optical sensor systems employed

in the Layered Defense System against threats at long ranges with

high angular density. Several studies have been completed re-

cently in assessing the CSO resolution performance for various

optical systems 11-42. The COO parameter estimation performance

can either be predicted by theoretical lower bounds, say the

Cramer-Rao lower bounds [1-43, or be evaluated by the Monte-

Carlo simulation of specific algorithms. In the earlier
studies (1-4], the estimation accuracy for the intensity and
position of the CSO's were presented for various lens apertures

and noise models under the assumption that the exact number of

targets present is known, The COO detection performance was not

presented in these studies.

It is the purpose of this report to address the following



issues through a simulation study1 Is the above-mentioned

theoretical lower bound achievable in practice? Can the number

of targets present in the CSO cluster be determined with certainty

so that the assumption made is true? %n the simulation, a mai-

imum likelihood estimator is implemented for the CSO.parameter

estimation and the Akaike information criterion (AIC) is em-.

ployed to determine the number of targets. A specific sensor

and noise model an well as the detector scanning mode is selected

for this study. For other sensors and noise models and detector

patterns, a similar CSO detection and estimation algorithm can

be implemented very easily. This work is in its initial stages.

The findings reported here are interesting but not necessarily

complete and conclusive. Further investigations are currently

in progress and will be reported in future reports.

The problems concerned in this study are first stated in

section 2. The models of signal and noise in a single scanning

detuctor environment are outlined in this section. The methods

for detection and estimation are desonibed in section 3.
Soction 4 presents the Monte-Carlo simulation results of detection

and estimation performance. The estimation performance thus

obtained is also compared with the theoretical result. Some
details of the computational aspects of the algorithm and the

program listing are attached in the appendices.
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A
II, PROBLEM STATEMENT

For the purpose of this simulation study, the optical sensor

system can be simplified and is represented in Fig. It. The opti-

cal point targets which are in the field-of-view of the sensor

.,;#ill form an image on th0 focal plane. This image is.often re-

ferred to as the point spread function (PSF). An optical detector

is usually employed to scan the image in a fixed direction. The

spatial structure of the optical image is thus converted into a

temporal electrical signal. This signal is then subject to

amplification, filtering and analog-to-digital conversion before

entering the signal processor. Noise sources which can be in-

troduced at various points of tite system include the background

radiation noise, scanning noise, optical-esectriodl conversion

noise, amplifier noise and quantization noime,. For simpltcity,
it is assumed in thi! stUdy tiat thesenoue. so'urc,,s can be lumped

together and represented by an'additive white gaussian noise (WGN),

n(t). The oboervations available to the detection and estimation

processor can then be written as

y(tz) ad(tt) + n(t•) 2.1, 2,°.,,k (1)

where sd(t) is the desired signal. Given these observations the

processor is then required to perform the following two functions;

1. Determine how many targets are embedded in the

3
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observed signal (detection problem)

2. Obtain intensities and positions of the targets
(estimation problem)

It is the purpose of this report to describe an algorithm for

such a processor and to eva&.uate its performance.

Suppose that there are n point targets which li along the

scanning direction of the detector, The desired signal sd(t)

is simply given by
n

Sd(t) - aiso(t-Ti) (2)

where ai and Ti are the intensity and position of the ith target;

s 0 (t) is the basic target response generated by a target of unit

intensity lying on the optical axis. The shape of so(t) depends

upon the PSI of the particular aperture and the scanning response

function of the detector. Suppose the aperture is annular with

50% obacurationj the detector response function is uniform and

equal to unity within a rectangular gate and equal to zero

elsewhere. Then so(t) is given by (6].

s0 (t) W (xftaxd8 (3a)

'This assumption ham to be made because the cross-scan position
of a target can not be resolved by a single detector.

J5
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where
2

2½ 2 2 2½8 (X+y2) 4 JlTx +Y

3 (xy) . lt€ 2+y t . (x2+y2)b

Here, J!(.) is the Be08el function of first kindl a is the an-
gular scanning rate normalized by the optical diffraction limit .

X/d; x and are the in-scan and crose-soan angular dimensions
of the detector normalized by A/d. Without loss of generality,
the scanning rate can be assumed equal to 1 and thus the time.
variable t is equivalent to the angular variable e. These two
variables will be used interchangeably #hroughout this report.

The basic optical pulse, a0 (t), is depicted in Fig. 2 for a
detector with Bxm2 and y =6. Note that there is a slight overshoot
near the center of the pulse. Fig. 3 illustrates several sample
waveforms, y(t), from detectors of identical nice for the came of

2 CSO's with various intensitieS* and positions. The variance ofthe WcN is equal to 1. it can be seen that the 2 targets which are

separated by 2.5 X/d (Pig. 3a) correspond to two-peaks of y(t),
In this came they can be detected and estimated with a matched
filter followed by a peak detector. However, in Pigs. 3(b) - 3(d),
the two targets which are located within one detector width(2X/d)
interfere with each other to such a degree that only one apparent

W;•e i a d- s(t) -k as Tas the peak at the center (t-o) equal
to 10 for a m 9.08.

6



111 1 *I I.I I I I .1 1 i' P I* .... !

0.75

lAo ,?6

So@.se

S-55 -. 3. 5.

inguIaC pouitiOn (S) ini Units of X/d

Fig. 2. Typical pulse shape, Eq. (3).
mI

0,86 7



AA
ie~e

I',l

1.25 )./ 2

I.,

I'. + .

&IM439Of 08 * a24.54

|,I" 2w / " "

' 7 in ut- ,f" A/d I' / l

Fig. 3ad.Somie examples of the observed signal, y(t), in the
case of two CSi'sI the variance of the WON is equal to 1.

8

'3 I I I I I I I I @ l I I I w I I I ' I r l T I l I r



peak is observed in the resulting noisy waveform. A simple peak

detector may not be capable of resolving satisfactorily the two

targets in the3e examples* Other more sophisticated 4etection/

estimation schemes are required for this purpose.

9
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111. METHODS

3.1 A.kaike Information Criterion

One approach for determining the number of targets imbedded

in the observed data is to apply the generalized likelihood ratio

(GLR) test. There are some difficulti s in applying this method.o

First, the distribution of the GLR is hard to find so that the

behavior of the test may not be known exactly. Second, since

the test can only be applied to two classes at one time, multiple

application of the test is required for the present problem.

Third, the choice of the test threshold is usually very subjective.

Akaike has advocated a new approach, termed the Akaike in-

formation criterion (AIC), for determining the order of the correct

model (for the problem here, the order in the number of targets

present) [5]. This information criterion is based on an extension

of the maximum likelihood principle starting from the fundamental

notation of entropy in statistioal mechanics and the Kullbaok-

Leibler information quantity. The final statistic used to optimally

choose the order is defined by

AIC - (-2) loge (maximum likelihood) + 2(number of free parameters)
(4)

The correct model is that which minimizes this criterion.

10



Note that the first term in the definition of the"AIC repre8nhts

a penalty of "poor fit" and the second term characterizes in-,

creased unreliability. This.second term is essential because the

maximum value of the likelihood function with the higher order

model (model with more parameters.) is usgally greater than that

ofth Mm& 11er':model ahd- theeo e 4 otWith'6ut' this- term, the model
with higher order would be favored. ,Qualitatively speaking, the

AIC provides a mathematical formulation of the prinoiploof

parsimony in model building.

The AIC has found many applications in various fields,,par-

ticularly in the autoregressive model fitting of time-forie .

analysis. Since the theory is general, it is earnily applied to

the detection problem stated in the last section, Two obvious

advantages for using the AIC in this problem can be seen from

Eq. 14) I

1. The AIC is easy to applyl Eq, (4) is very simple.

2. The'AXC combines the detection problem with the estima-
tion problem. For detection (determining the order of
the model) the information from estimation (finding the
maximum likeiihood function) is needed, Once the de-
tection is done, the maximum likelihood estimates of
parameters in the correct model are also available with-
out additional effort.

Although the ArC is derived from the ideas of information

I1



theoy# her sems o b hOparticular basis for the penalty

factor 2. Some investigators, applying the AIC in'their par-

ticular problenmse reported that this factor should be between

365''ahd 4 (7], It can be shown thiat the AIC decision 'rule in

equivalent to the hypothesis testing prooedurs at an ippropriate

si~ifcaiclea. i a t base of 'two classes. Usngdfert

values for the penalty factor is analogous to adjusting the.

significance level. The effect of this 'factor wili-be repor~ted

in this study. For this purpose, the AMC can be rewritten as

where n is the penalty factor azd i is the number of targets pro-

sent.

It is reasonable to assume that AIC Ci) is a discrete uni-.

modal function of i for..a gixed values of n. Thes~re~r: the 410tec-

tionr procedure is simply as follows$

Step 1. Start with 1-01 compute AIC -AIC(O).

Step 21 increment i by 1,

Step 31 Compute AIC (i).

Step 41 If AIC(i) is greater than ACp go to Stop 5. Othe~r-
wise, set AIC w AIC.(i) and go back to Step 2.

'Two paraMeers., MnEVR~.y an3 position, are associated with each
target.

12



Il

.M.

Step 51 Stopp the number of targets present is equal to
(ii

3.2 Maximum Likelihood Estimator

The maxis.um li.kJ,1ihod •mestimator. (MLA-) is" implied- ini the AMC

procedure. This estimator posesses several nice properties. It
"can be shown that the ML., under rather general oonditions, is

asymptotically unbiased and efficienty it yields the same results

as ihA least-square method for the case of additive white

gausmian LOame.

For the signal model described in section 2, the likelihood

funotion can be written as

62i T ro

where

8 t 1  on (t MT .

s = •t 
(t 

(7) 
, ,

TT
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and a, considered as an unknown parameter, is the standard de-

viation of the WGN. The maximum likelihood estimates of x and 0,

denoted by x a (-) and e are the values.of x and a which maximize

,(x,c). Since t logarithm is a strictly increasing function,

the maximization of t(x,a) and log 1(xa) are equivalent. Let
-a.

J(x,a) - logetL(x,a) -

k Ty log,(27r)-kloga - (X-Qn) (8)

The maximum value of this function is the first term needed to

evaluate the AIC.

It is usually not necessary to estimate the unknown a ex-

plicitly and it can be dropped from the expression for J. By

taking the derivative of J with respect to a and setting it to

oero, 0 is obtained as

a (9)

By replacing a with C, Eq. (8) becomes

J(x0) - - loge(2 )T) (10)

Using this logarithmic likelihood function with the first two

nuisance terms discarded, the AIC given by Eq. (5) can be

14
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written as

AIC(i) a klog 02+ 2ni. (11)

It is clear that as far as the maximisation is aonoerned

J(x) in Eq. (10) can be replaced with

J(x) (•-na) T (12)

By setting the gradient of J(5 ) with respect to A equal to zero,
A

the intenutiy eatimate, I, can be obtained as

A T T
a 0 On 0n On. (13)

substituting j in Eq. (12), J can be rewritten as

T jl T " Tlv()
J 14 Iwnan On) On _1X -4

The maximization of the likelihood function can be done with ren-

pect to expressions given by either Eq. (12) or Eq. (14). The

former involves 2n parameters and the latter involves only n

parameters but requries ratrix compuations which usually need

more computer time. Experience seems to indicate that it in easier

to use Eq. (12).

15



It should be noted that the .7 function in nonlinear on the un-

known parameters* its maximication is implemented here be using

the Quasi-Newton method [6) which is an iteration procedure start-

ing with an initial guesn. This method is appealing because it

possesses the quadratic convergence property near the maximum of

the criterioni function (like the Newton method) arid avoids the

difficulty involved in computing the inverse of the Hessian

matrix at each iteration (unlike the Newton method),* At each
a J (20

iteration, the gradient, VJ(j) m'(, # iollase,2n)f is required,
BJ~x) ~daxi

whiohl from Eq. (12)p is given by

Here# from Eq. (2),

and, from Eq. (3)p

(t) W s~a+x2 y) - f(at-OX/2 # y)]dy. (17)

The unknown parameters are not entirely free but subject to

two types of constraints. The intensity of any target, aip in

physically constrained to be non-negative. This constraints can

16



be released by substituting b2 for ai. By doing so, nothing is

changed except that the parameter set becomes x so- {(bloopbn'
T

T,.l.sTn}T and Eqo (16) is replacoed by

2biso(t-i) (1)b

ax- _b . 2,- as0 (t-_-'Ti.••)

The final estimate acan be obtained by setting i a- i 2

Suppose now the sequence of observations, X, is obtained in

the range from 0o-y/2 to 8o+y/2 where y is the angular distanuce

covered by the observations and O is the central point of the

range. In practice, it can be assumed that the admisuible r••.e

for Tip center.,of the ih target response, i also within this'

range, In other words, only takoets with ocnter falling in this,

range will be identified* This additional range constraint will

be incorporated into the Quasi-Newton methods

The choice of initial guess is a crucial step for the Quasi- a

Newton method, A good initial guess can lead the iteration prcOss

to converging to the correct maximum in a .relatively small number of

iterations. On the other hand, for a bad initial guess, the itera-

tion process might converge to a. local maximum, oscillate around

the maximum or not converge at all,

One method for generating the initial guess is the pure ran-

17



0

dom search. This method consists of computing J(!) at N random

points drawn from a probability distribution, uniform over the

entire parameter space and selecting the point with, the greatest

value of J(:) as the initial guess. if it is assumed that each

parameter can vary between 0 and 100. and.that .,the op0timal; pare-

meter set which correspond to the global ma*xim= Of'J•(T) i" to be

located within 10% of each parameter then the probability of

locating the optimum in N trials is [91

N

p - 1 -( 1 -1 0"n) . (19)

Conversely the number of trials required to have a 90* probability

of locating the optimum is

N.- l/l.og(•~L.. z2.3xl0n. • (0)

Obviously, the required number of trials increases ;apidly with

the number of unknown parameters, n. -f there exists a single

target (n-l) the pure ranaom search, *eems able to yield a "good"

initial guess within a reasonablI, oompuiation' time.ý Howiver

for more than one target this method becomi, .impractical.

A more practical approach is t6 use the pure random search

in conjunction with a priori knowle4fe. As.popint.o out *a•ci.er,

"WFor the purpose or selecting an initial guese, sq. (14) instead
of Eq. (12) is used.

11



in applying the AIC procedure to determine the number of targets,

the statistics AIC(i), i-i, 2,...,, are computed in ascending

sequence. At each'step the',ikelihood function is maximized iter-

atively starting with an initial quess. It seems feasible to

select the initial ,,gaueuiofhe h. stoep-,in:.such a way -that

the initial values of the first i parameters are equal to the i

estimates from the previous step and the initial value of the

remaining parameter is chosen from pure random search. Thus, the

initial, guess for any model (number of target) is obtained by per-

forming a one-parameter search which is'*asier numerically.

-This approach guarantees that the maximum likelihood function

of the (i+l)th step in no less than that at the ith step.

However, if for the Model of i+l targets, the first i comporents

of the true optimum in the i+l parameter space axo far from the

optima4lpoint.deitermined in stop i, the initial guoes obtained

in this way is usually not "good" for the (i+l')th 'step. The

actual implementation of this approach is described in the

appendices.

19



IV. SIMULAT1ON-RESSUýT AND DISCUSSIONS

,The performance of detecting the number of targets present and

$at mating'the parameters of these tatgetz is evaluated by Monte-

Carlo simulation. The simulitiun algorithm has been described in

!the previous section A -:tho're a dtails are given in the appandides,

In presenting the results, some system parameters must be specified.

It is assumed that the',signal available to the processor in observed

in an angular range of + 6.3 X/d from the center of the focal plane.

The signal iS sampled uniformly in this range at an interval of

.2 A/d., The total number of observations is 64. :The signal is

the product of an annular aperture with 50% obscuration and a

scanning photo-detector with in-scan and cross-scan dimensions

equal to 2 A/d* and 6 X/d respectively. The number of' Monte-Carlo

runs is fixed at 100 for every came discussed in the following.

4.1 Detogtigg Performtinc

First consider the case where at most one target may exist.

One must decide between two hypothesest H o no-target and HII

one-target present. For this case it is only necessary to compute

AIC(O) and AIC(l), and the decision rule accepts H0 (HI) if AIC(0)

(AIC(l)) is the smaller of the two. The detection performance

ITHe In-scan -imension of the detector is approximately equal to
the diameter of the blur size (diameter of the first dark ring) of
the PSF.

20



curve (false alarm rate vs. leakage rate) in shown in Fig. 4.

The false alarm rate (Pf) is the probability of accepting H, given

that Ho is true and the leakage rate (P ) is the probability of

accepting H0 given that H1 is true. The parameter d in the figure

is signal-to-noise ratio related and defined as.

a - a2 (t ) /a. (21)

Here a is set equal to 1 and a varies among .908# .454, .227 and
.114 for the four curves shown. Each point on the performance
curve corresponds to one value of the penalty factor n in the

AIC defined by Eq. (5). The value of n is established by the

actual operating point which is determined by the requirements

for Px and Pff

Now consider the case where there are two CeO's (nu2) sepa-

rated by AS which is less than or equal to 2X/d (one detector

width). It is always assumed that the two targets are located at

TI--e/2 and T2 -Ae/2, and-o is equal to 1. rig. 5 shows the pro-

babilities of identifying correctly, from a given observation, 2

targets# P(2), less than 2 targets, P(42), and more than 2 targets,

P(W2). The observation comes from two equally strong targets with

signal-to-noise ratio (SNR*) of 10. The penalty factor, n is

chosen as 3 here. The curves shown arc drawn by connecting the

T*The INR of a target is defined as the intensity of the target at
the center of its pulse shape divided by the RMS of the noise.
The interference noise is not included.

21
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finite simulation points. The probability of correctly identifying

2 targets is as high as 90% for separation, Ae, of 2%/d (one

detector width). However it is less than 25% for separations

smaller than .5X/d (quarter of the detector width). The error

is mainly because the 2 CBO's are identified an a single target.

For separation, A81 between #5/d and )/d-,-the oobeat•'detection

rate is between 25% and 65%, and mis-detection is attributed to

both under and over identifying the number of targets. The data

at no r-paration (48-0) can be viewed from another angle. At

tA-0, the 2 CSO's are coincident an& indistinguishable from a

single target, Therefore, the data indicates that.a single target

with SNR-20 has 95% probability of being identified as a single

target and 5% probability as 2 CSO's.
Fig. 6 illastrates the effect of choosing different values

for the penalty factor n. It can be seen that using larger values.

of n can increase the detection rate for separation-ABX/d, but,

at the expense of poorer performance for 404/d. There appears to

be no obvious way to select n optimally. This does not contradict

Akaike's theory because no proof for the optimality of using 2

for n, as proposed by Akaike, has been given. Although not shown

in the figure, it is worthwile to point out that for niwO P(2) is

equal to 0% for any separation, AS. In other words, the number

of targets present is never correctly identified as .2 when the

penalty term of the AIC statistics vanishes.

24
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Fig. 7 shown P(2) a's a f unciioni of -ý6 for seve'ral "dif ferent

sets of target inter .sity . T Ihe .variance of nokie remai n equ .al to

1~. It is observed that' the corkect date.btion. rate is gonerally

higher for greater intensity Oxcoet for the suadden drop of. the top

curveX /tA s"/. T.e4qpi tuton rtat, is due.. toý the, fact

that 'in many of the :100" Monte Carlo runs' for this case, the inii-

tial guiess provided by the nimnulatign algori thins causes the

Quasi-Newton method to oscillate or to converge to a local maximum

for the 2-target model but leads to a final'estimation for 'the 3-

targmt-inodel, which includes 2'targets close to'the true ones and

a third target of insignificant intensi~ty's Note that an experimen-'

tor-supplied.11good" initial guess for the 2-target model can bring

up the detection rate' at'this point. ka to why the algorithin

fails at this parti~cular point, no,,qAtisfactory explanation, has

been found.,

In Fig, 5 the true model- has 2-target with a1-a2m9.0 and

T 1xm-r~iAe/20 Suppose the initial gueiss ofk the Quasi-Newton pro-

cedure is supplied by the experimentor instead of the algoribihm

itself and the exlperiinentot' intelligently selects a10l8.l61TI 0O

for the initial guess of the 1-etarget model, a 1 na 2 0909,
o 0 0 0 0T - aA/ for the 2-aqtmodel and a a2--8 3 i
o 0 0

T O-O 2 --tAO/2# T~ 3 0 for the 3-target models The resu~lt~in. de-

tection performance is sehown in rigs Be A comparison of Figs.

5 and 8 showd that the "good" initial guess increases the correct

26
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detection rate significantly. For separations as small as .8/d

(two fifths of the detector width) the detection performance is

almost perfect. The incorrect detection for even smaller separa-

tions is because only one target is recognized. The chance of

identifying more than 2 targets is almost nil in the entire range

of separations considered.

4.2 Estimation Performance

The performance of an estimator is usually evaluated in terms

of estimation bias and variance. From the N simulation runs, the

variance of an estimate is computed as
N

1i - Xi) (22)

W(j)E thwhere x, is the estimate of the parameter xi in the h run and

in the mean of the estimate. The bias of the estimate is then

given by

bx I.i " xi (24)

This sample variance can be compared with the 'CrAM6t•-Rao

29
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bound (CRB) which is a lower bound on the variance (or covariance

matrix) of an unbiased estimator. In the case of a single target

in additive white gaussian noise, the CRB for the estimation of

parameter vector x can be obtained by

c(xi) (F~(25)

i k @s (t ) asd(tl)
j -- (26)

Z-i xi ax

where F is the Fisher information matrix, a 2 the variance of the

noise and sd(t) the desired signal. A net of discrete observations

is assumed. This bound is usually tight when the signal-to-noise

ratio is high,

Figs, 9 (a) and (b) compare the square roots of the o(xi)
and a2 for the intensity and postion respectively, in the case

Xi

of two targets with BNR's both equal to 10, The angular separa-

tion between the two targets is the control variable. The

simulation is only run at certain values of target separation.

For the data shown in these figures the detection procedure is

omitted by assuming that the number of targets present is known

exactly in advance. That is to say a 2-target model is always

assumed. The initial guess for this Model is provided in two

different ways for comparison. The first uses the procedure

described in section 3,2 and the second relies on an "intelligent"
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experimentor who selects the initial value of the paameter in-the

neighborhood of the-true one, * Note that since asa 2 .and

1ri11'r21,,the conoerne4• statistics for the first target.,should

be very close to those for the second target and so no distinction

between them Is made in this' figure..,

From Fig, 9, it can be'seen that when the initial guess.is

provided by the algorithm automatically, the estimate vaiance,

agrees with the CRB very well at target separations of l,.5X/d,

2X/J and 2,5X/d, Recall that the.observed signal exhibits two

peaks for separation of 2,5X/d as shown in Fig. 3(a). The

sample variance is significantly larger than the CR3 for separa-

tions less than 1.2X/d, When thA "good" initial guesses are

employed, the estimation variance becomes quite close to the CRB

except at the point where separation, 40-,5X/d, This once again

demonstrates the importance. of the initial guess in an.iteratLive

optimization algorithm.

Figs, 10(a) and (b) show-the same types of comparison as

that of Figs. 9(a) and (b) for two targets with SNR1s both

equal to 15, Similar behaviors are observed, It should be pointed

out the O1W)Fa and 1TT of this example are smaller than those

of the former example by a faotor of 1,5, which is exactly equal

to the ratio of the two corresponding SNR's.

Ecase; the-estimation procedure starts with the one-
target model and.ende with the two-target model. In the second
case, it is only applied to the two-target model.
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a

Based on the same simulation as used in Fig. 9, the biases

and the RMS errors of the intenmity and position estimations are

shown in Figs 11(a) and (b), Here the initial guess is generated

by the estimator itself. It can be seen that the estimator is

actually biased irý.the region where the sample variance deviates

significantly from the Cramer-Rao bound. Meanwhile, the. intensity

bias, ba, is relatively small compared to the corresponding sample

standard deviation (roughly by an order) over the entire CSO

region. However, at very small separation (<lX/d), the position

bias is significant and contributive to total RMS error. If

only those runs in which the number of targets is identified as

2 are used in computing the statistics, the bias, sample variance

and RMS error can be recuad slightly.

The mean-square error a is the sum of the variance and the
squared bias e2-02+b2,
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4.3 DiscUssion

In this simulation study, the pulse shape of the response of

the photo-detector to a unit-intensity point target is assumed

known exactly in advance. What the detection/estimation processor

does is to adjust the intensities and positions of"a..oertiin '.

number of ideal pulse shape@ to best match this "synthesized"
signal with the given observations If the pulse @hap* is•di~f-
ferent from the one assumed in this report due to differences in

aperture shapes, detector responses, detector configurations

etc., the simulation program is still applicable as long as the

pulse shape and its derivative can be made available. However, the
performance of the detection and estimation process may vary
significantly with different pulse shapes.

The algorithm described in this report is designed to process j
the CSO segments rather than the entire observation. Ztgaeems

feasible to use this algorithm as the second stage of a two-stage

signal processor which first process the original signal to identi-

fy the isolated "resolved" targets and to separate them from the

potential CSO's. This approach may be quite efficient oomputa-

tionally if the probability of occurrence for CeO's is much lower

than that of isolated targets.

One version of the Quasi-Newton method is implemented here for

the optimization of the likelihood function. There exist some
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other methods for this purpose,, which can be divided into two

genieral categoriesj the random method and the gradient method.

Usually, no single method is best for all types of nonlinear

optimization problems. No evaluation of different methods on the

present CSO problem is undertaken in this report. 'However it is

the author's feeling that selecting a particular optimization

method may not be as important an devising an efficient and promis-

ing way to provide the initial guess.

A single scanning detector is assumed in this report. Since

this detector can not resolve the cross-scan component of a tar-

get's position, the targets are assumed to lie along the in-scan

direction. To determine the in-scan and cross-scan positions

of a target, other detector configurations such as the chevron

(a pair of detectors oriented in different directions) should be

used.

In this simulation study, an additive white guassian noise is

assumed. This assumption is valid when the thermal noise is the

dominant noise source in the optical sensor system. However this

noise model becomes inaccurate in the so-called shot-noise limited

case where the noise level is dependent on the signal [3], Even

for this case, the detection/estimation scheme presented in this

report can apply except that the likelihood function and its

gradient should be reformulated. The mathematics involved is,

of course, more complicated but still tractable,
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V. CONCLUSION

In this report the detection and estimation problems of

closely spaced optical point targets are gttdiid utinj sir~ilition.

An. annular aperture.of 50% obscuration.and a scanning photo-deteo-

tor with iti-san •and ro-s-dazdr~enuio'na -equal-,.to- '2X/d--&nd6-/d.

.respectively-, are employed. The observed signal which originates

from two point targets exhibits a single apparent peak when they

are separated by less than one detector width. To detect and

estimate such "unresolVed" targets, the Akaike information

criterion and a particular maximum likelihood estimator .se.

utilized. The estimator is in fact a nonlinear estimation

algorithm.

Severul examples have been examined. It is found that for

target separation between 3/4 and 1 detector width, the correct
detection rate is fairly high, the eitimaitr.unbiaseqdand' the

sampled varianne close to the Cramer-Rao bound. However, the

detection and estimation performances delrade significantly for

smaller separations. This is unavoidable because when the two

targets get closer they become more indistinguishable from a single

target, particularly in the presence of noise. More importantly#

the difficulty in providing algorithmically a "good" initial guess
for the estimator contributes to the poor performance. Un-

doubtedly, the performance of the algorithm can be improved if a

more intelligent way of choosing the initial guess can be devised.
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*APPENDIX As COMPUTATION&Zt A5PE&S

Programs have been written In accordance with the principle.

described in section 3 in order to simulate the detection/estimation

prqcehsor, The pirforniance of the prdoo#ffir ýis closely, re lated to.

hep~4tcli in~lmnai dpe. Terefore, before present-

ing the simulation results, the program actually used hoes to be.

specified more carefully, The top-level flow charts and details'

of some subroutines are given in this the following appendices*

A1 Top-level Flow Charts

For practical reasons, the simulation is done in two steps

hy two different main programs. The first one (TABLE) is used

to create the standard pulse shapes of s (t) and 1 0 (t) in advance

for use in Lhe second one (CBOMCS) which is the program per fprming.

detection and estimation.,

The top-level flow charts of these two programs are depicted:

in Figs. Al(a) and (b) respectively while their listings are giver.

in the appendix. In these charts the functions of kpioc''bl'ooks

&te implemented by subroutines, The names of themes s*broutines

are put down beside the associated blocks. Some of them will $tA

further explained in the following subsections* Note that the.

detection statistics ate the output of the floW chart pii M
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It can be modified easily to yield the estimation statistics.

A.2 Quasi-Newton Method

There are several versions of the so called Quasi-Newton

method [81] One partioular version has been w-en by DPr. R. w.

Miller in the Laboratory. This version is modified here to meet

the requirements of the present simulation study. The procedures

are an follows:

Step 1: Set knOt read in the initial parameter values, xO

and the number of targets, n.

Step 2: Compute J(xO) and VJ(xO) according to Iqs. (12),
(15) and (18). Find H0 by inverting the matrix1 0 0 a 0 , o)G°J.j (X •Loe....x +d,, x ÷1,..,,x n) r (E `1 ,jmj,2p,.,r2

where d 4 a fixed perturbation* it 0 is unin-
vortable, is choes an a s.iagonal matrix with

H0( ii) a d Vi (!_°)ll

where l l I is the Euclidean norm.

Step 3a Compute the increment of x

Axk Hk k

and itsimise,

An k

4 2
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If a is less than a preset oteo size a, go to

step 4. Otherwise, multiply k with a/o and set
am .

Step 41 Compute the increment of J(1k)

Ak (jk

if &J(xk) is positive, go to step 5. Otherwise#

replace .Axk with

A xJ ( x k )

where i is a preset number.

Step 5, Update li

I k+l =I +41 k

r~ r

Step 61 Apply the range constraints, - x +• n f

J-l,...,n. For any J, if Ix +•+1 r go to step 7.
Otherwise, set

xk+l 7 n+j I
n+j r k~l r

T Xn+j >

and

Ax~k xk+l Jk
n~j n + Xn+
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Recompute the magniude of the increment,

C W jjtxkjj

Step 71 compute (jk÷l), VJ(lk÷l) and

k )T

(xk) T Hk

provided the denominator is not equal to zero.
Heree

-aJ( 1 - VJ(!k)

Step 89 If a _ co, the iteration converges and x is the
desired estimate. Stop. Otherwise proceed. Note
that co is the threshold value of the stop criterion.

Step 91 If k 4 kor set.k u k+l and go to.step 3, Other-
wise, proceed to the following step, HerestkO 8
a preset value for the maxcimm number of iterations.

Step 10: Among k. iterations find the one which has the
greatest value of J( k). Take the estimate of this
iteration as the final estimate. Then stop.

The above procedures are implemented in subroutines ONIW and
ITERAT, The necessary constants are preset for the simulation as

d $ .005, P " .5, B - .15o a " 100 a and ik 50.
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A.3 Computations of so(t) and ;o(t)

The Quasi-Newton procedure requires, at'aoah iteration, the

computations of J(x) and VJ(x) which, in t urn, requires those of

5 t ,r) and s.,tt--Ti) for £mD.kt -and ;IV~ti

very time-consuming to directly carry out# for every iteration#

the associated single and double integrals. Although the computa-

tion time can be reduced significantly by using the high-speed

convolution method# it is still quite noticeable. An alternative

approach is to compute in advance samples of Sm(t) and (t•). an

well an their spline coefficients, and store them in files, At

the beginning of the simulation, these data are first retrieved

and later on, whenever needed, mO(t -T±) and so(t;-mi) can be

compýtold by simple interpolations whioh take almost no time. If

the number of stcred samples is large enough, the inteo pelatton.

would provide sufficient accuracy,

Since s(t) and e0 (t) would be only computed once and off-line

the computer time required is not critical. They are computed by

directly carrying out the double and single intergrals of Xqs, (3)

and (17) using the Gaussian-Legendre quadrature formula (10, 11].

This formula given for the single integral,

I u f(u)du (A.1)
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the following approximation

I ~!~ZA~) (~ix~ + (A. 2)

where the weights An) and abscissas x n can be found from a

standard mathematical' table.. The formula is exact whenever f (tA)

is a polynomial of degree < 2n-1. The double integral of the form

b f**(u)
I• f[ f (u,v) dudv (A. 3)

(v)

is approximated by

(n) (0i V
AA 1:+[A Ca()

2 1: ( 2 ).fL-E• •1 Joe l-• 2 ' 2

with (A, 4)

Oj k? x + b~a

Here, both n and m are chosen equal to 16 for the current applica-

tione, which is shown experimentally to be sufficient. Two sub-

routines QMULT2 and OMULTl have been written for this purpose.

The spline coefficients used to interpolate the net of points

from so(t) (or a(t)) are computed from the Quasi-Cubio Hermits

splines .112]., The cubio spline representing the function between

each pair of given points is determined by the coordinates and

slopes at the two points, The slope at each point is determined
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locally by the point in question and two points on its each side. I
The result.ng curve passes through all the given points. The

subroutine IQHSCU which is available in the ZMBL package [13) is

employed for this oomputation. The sobroutine MBDOT called by

the simulation main program .performs. the necessary interpolations

to yield values of sd (tt) (Eq. (2)) arid Sod(tt)txi (Eq. (16)),

for -Z9, 2,..,,k and i-l, 2,,,.,2n given any 1 and T, Using the

output of SSDOT the subroutine JFCN computes the desired J(!) and

A 4.Choice of Initial Guess

The subroutine IC is employed to provide the initial guess

for the Quasi-Newton procedure. The associated principal logic

has been described in subsection 3,2. In, this subseotion, the

details of the program and the flow. chart are o* on.

At the (i+l)th stop of the AZC proceduro, the initial guesses

of the first i targets are net equal to the estimates from the ith

thstop and the initial guess for the (i+l) target is found through

the pure random search, from Eq. (12), it is clear that max-

imizing J(x) is equivalent to minimising the following function

~~I,1l a['~ 0 ~a (ta -Tj) A

over a, and T, jmp,...,i+l.
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Since a and TV j=l,...,±, are already fixed, it also beoomes.

equivalent to minimizing

2t - ] 2  (A.6)

over ai÷l and Ti+,p where

y 1 (t£) - y(t) - • 1 a•soltg-rj) (A.7)

is the residue of y(t) after being fit by the fixed i tar-

gets, Further assume that (ai~l, Ti~l) lies on the curve imposed

by

"a•2

io+l

k

ac (A.8)

s O -(tTi+

Thin leaves Ti+l the only parameter to be searched for the min-

imisation of 43. The number of random trials in searching for

'i.1 is selected equal to 50 in the program, The flow chart is

shown in Fig. A2,

•q. (A.8) ~I--the same s Eqj. (13) with nl.
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APPENDIX B: PROGRAM LISTINGS

The whole simulation algorithm is composed of two main pro-

grams, TABLE and CSOMCS. The important input and output variables

as well as the listings of these programs are given in this appen-

dix. AS for the detailed logic of the algorithm, readers should

refer to the context of the report. The comments incorporated in

the program will be also helpful in understanding the program.

Important Variables

TABLEt

IP R indicator of the type of apertures 1 for square
aperture and 2 for annular aperture

E a obscuration factor of the annular aperture: 0<E<l

ANGLE w orientation of the detector, specified by the angle
(degree) between the centralline of the detector and
the cross-scan directiont OANGLE<90.

NPOINT a number of points where values of s (t) and 8o(t) are
computed 0

TDELTA a interval between a pair of successive points in units
of X/d

TBEGIN W position of the first point, equal to (NPOINT-1)
*TDELTA/2

ARG a array oontaininq positions of the NPOINT points

VALl = array containing the corresponding NPOINT values
of s0 (ti)
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VAL2 - array containing the NPOINT values of a (t

SPLINI array of dimension NPOINTx3, Containing the srline
coefficients of. *(t) .

SPLIN2 , array of dimens~iosn POINTX.3, oontainihg the spl.ine

coefficin tt

FILN - name of the fil'e .,h:dh keeu.the..nece$ury.data. ...:..

(FILEN, TBEGIN, .TDSLTA? NPOINT, ARG, VALlI' NA•2.,
SPLINI and SPLIN2) for use in the.u simUl'tion Orogram.

CSOMCS

CSOMCS:

FILEN, TBEGIN, TDLThD 'NPI.6fT, ARG, , *vV,• ,VAL20 SPLINI.

SPLIN2 as defined above for the program TABLE, • ,

The following parameters a:s up*oifip4 in order to generate

artificial noisy signal,.
.. ~ ~~ ,... r" ,•'.. . ....

IX - seed of the random number generator

NLOOP = number of Monte Carlo simulation runs

NTO u number of targets present

NS - number of samples

DT - sampling interval

AMP - array containing intensities of the NTO targets
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THETA = array-containing positions of the NTO target@

STD - standard deviation of the WON

RT r position of the first lamplep equal to (NB-l)*DT/2

*ThM'followiino-aamatsiete art umad in tha- diattotiont/etiffatiot

procedure:

NT - number of targets assumed

N - total number of free parameters, equal to 2xNT

S"X " vector of length N. The intensity and position

estimates of the ith target are kept in x(l£ 4-

x(i+NT). ..

NM ... preiset upper bound of the number of assumed target

ETA - value of the AIC penalty constant•

AIC - 'Value of the Akaike information oriterion

NSO " value of J(!) in Eq. (12)

SSQN * value of 680 under the assumption that no target pro-
.'sent

• I - vector of length N5 containing values of m~t) aken
In the NI points
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SDOT = vector of length NSxN containing partial derivatives

of sd(t);

asd(tO) asd(tL) asd(td) asd(tZ)
poser ,..., .are

9a 1aaNT arl 3TNT

stored sequentially in the locations beginning at

SDOT ((-) *N+1)

XBAR vector containing mean values of the estimates in all

the models assumed

XVAR = vector containing variances of the estimates

ICOUNT array whose i th element containing the probability of
identifying i targets

EPS smallest increment used in convergence test (for
QNEW subroutine)

LIMIT = allowed largest number of iterations (for QNEW sub-
routine)

ITRL = number of the random searches used in subroution

IC for choosing the initial guess

Listings
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C
C* MAIN TABLE
C
C --- DESCRIPTION:
C THIS PROGRAM COMPUTES AND STORES THE OPTICAL PULSE SHAPE AND
C ITS FIRST DERIVATIVE W.R.T. ANGULAR POSITION FOR FUTURE USE.
C THE SINGLE INTEORAL OF EO.(17) IS EVALUATED BY USING GAUSS-
C LEGENDRE FORMULA. SUBROUTINE OL016 PROVIDES A TABLE OF THE 16-
C POINT GAUSS-LEGENDRE FORMULA.
C THE DOUBLE INTEGRAL OF E0.(3) IS COMPUTED USING THE SAME METHOD.
C

EXTERNAL FCNFUPFLOFCT
DOUBLE PRECISION DX(16)PDA(16)
DIMENSION X(16)p A(16)v FILEN(3)
DIMENSION VAL1(1024)PVAL2(1024)PARO(1024),SPLINI(1024,3)PSPLIN2(

11024p3)
COMMON /PSF/ IPvE /DETOR/ CENTERPANOLEtBETAX
WRITE(6lO)

10 FORMAT(//10XP'*** TABLE .**'//)
WRITE(6v20)

20 FORMAT(lXv'READ IN FILE NAME')
READ(5v30) FILEN

30 FORMAT(3A4)
WRITE(6,40) FILEN

40 FORMAT(1XF'FILE NAME-',3A4)
TDELTA - .025
NPOINT-1024
RANGE - (NPOINT-1) * TDELTA
TPEGIN - -RANGE /2.
BETAX - 7.
BETAY - 6.
BETAYH - BETAY/2*
BETAYL - -BETAYH
WRITE(650)

50 FORMAT(lX,'READ IN IP: 1 FOR RECTANGULAR# 2 FOR ANNULAR ')

READ(5*) IP
WRITE(6960) IP

60 FORMAT (IX,'IP- 'P12)
IF (IP .EQ. 1 ) 00 TO 80
WRITE(6t65)

65 FORMAT(lXp' READ IN OBSCURATION FACTOR ')

READ(5,*) E
WRITE(6v70) E

70 FORMAT(lX,' E- ',F4.2)
SO WRITE(6990)
90 FORMAT(1Xp'READ IN DETECTOR ANOLE(DEOREE)')

READ(5,*) ANGLE
WRITE(6,100) ANGLE

100 FORMAT(1Xr'ANOLE'lvF6.2)
C
C OBTAIN THE OAUSS-LEGENDRE WEIGHTS
C

CALL OLO16(DXiDAp-1oD0v loDO
DO 110 l1-,16
X(I) - DX(7)

110 A(I) w DA(I)
MM 0 16

C
C COMPUTE THE PULSE SHAPErVAL1 AND ITS DERIVATIVE VAL2
C

DO 120 lIt*NPOINT
CENTER w TBEOIN + TDELTA* (I-1)
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ARG(I) a CENTER
VAL1(I) m LV1ULT2(FCNDETAYLBETAYHFUPPFL0,XAFMM)
VAL2(1) a OMULTI(FCTBETAYLBETAYHXAMM)

L20 CONTINUE

C COMPUTE 'rHE SPLINE COEFFICIENT OF VALI. SUB IGHSCU IS IN IMSL,
C MUTTHSP ECEF'CNTO L2IE

CALL IIPHSCU(ARGVALlNPOINTSPLINlNPOINTPIER)

C
C OOMUTE THE DATA OFFCEN F A2
C

WRITE(6v130) TBEOINTDELTANPoINT
130 FORMAT(/lX72El4o7pl8/)

WRITE(6w140) IARG(I) ,VAL1 (I) VAL2( I),(SPLINI (IJ) ,J IP3' *(SPLIN2(
ZIPJ) ,j=IP3)

140 FORMAT(lXrI3,2Xv9E12*5)
150 CONTINUE
C
C STORE DATA UNDER THE GIVEN FILE NAME
C

WRITE(BP160) FILENYTBEGINvTDELTAPNPOINT
DO 170 I=1,NPOINT
WRITE(SP180) ARG(I) .VAL1 (I) VAL2(I), (SPLINI (IJ) ,J= P3),
1 (SPLIN2(IPJ),J=1,3)

170 CONTINUE
160 FORMAT(3A4,2E14*7,16)
1S0 FORMAT(9E14,7)

STOP
END

C* FUNCTION OMULT2
C
C COMPUTE THE DOUBLE INTEGRAL SS F(XPY) DXDYp AAeLE.Y.LE.BB,
C FL(Y).LE.X.LE.FU(Y)
C

FUNCTION GMULT2(FCNPAABBPFUFLPXPAPMM)
DIMENSION X(1)PA(l)
HI - (BB-AA)/2.
01 - BB+AA)/2.
al1 0.
DO 4 I=1,MM
UI -H1*X(I) + 01
Al - H1*A(I)
D -FU(UI)
C aFL(UI)
H -(D-C)/2.
G (D+C)/2.
0 0.
DO-2 J1,oMM
VJ H*X(J) + 0

2 0 - 0 + A(J) * FCN(VJPUI)
4 01 w 01 + AI*H*Q

nMULT2 n01
RETURN
END



* FUNCTION FCN

C COMPUTE F(XvY) WHICH IS USED IN QMULT2
C

FUNCTION FCN(XpY)
DOUBLE PRECISION MMBSJIwDR
COMMON /PSF/ IP,E
SCALE - 3.141593
GO TO (i0,20),IP

10 IF (X .EQ, 0.) GO TO 32
Xl - X * SCALE
FX = (SIN(X1)/X1)**2
GO TO 36

32 FX=l.
36 IF (Y *ED* 0.) 00 TO 42

Y1 = Y* SCALE
FY = (SIN(Y1)/Y1)**2
GO TO 46

42 FY =1.
46 FCN - FX*FY

RETURN
20 R = SQRT(X**2 + Y**2 ) *SCALE

IF (R ,NE, 00) GO TO 50
FCNIlo
RETURN

50 DR=R
C
C MMBSJ1 COMPUTES THE BESSEL FUNCTION OF FIRST KINDPEXISTING IN IMSLo
C

BJI=MMBSJI(DRIERI)
IF(E.EO.O°) GO TO 60
DR=R*E
BJ2=MMBSJI(DRIER2)
GO TO 70

60 IER2-0
BJ2 = 0.

70 IF (IER1 .NEo 0 .ORs IER2 tNE. 0) GO TO 80
TEMP -2./((1.-E*2)*R)
FCN - ((BJ1 - E*BJ2) *TEMP)**2
RETURN

80 WRITE(6,90)
90 FORMAT(//IOXP' SUB MMBSJ1 ERROR ')

CALL EXIT
END

C* FUNCTION FUP
C
C THE UPPER BOUND USED IN OMULT2
C

FUNCTION FUP(Y)
COMMON /DETOR/ CENTERANGLEBETAX

'FUP - CENTER + BETAX/2.
IF(ANGLEoEQ0.o) O0 TO 10
FUP-FUP+Y*TAN(ANGLE*o01745329)

10 RETURN
END
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C* FUNCTION FLO
C
C THE LOWER BOUND USED IN OMULT2
C

FUNCTION FLO(Y)
COMMON /DETOR/ CENTERPANGLEPBETAX
FLO =CENTER - BETAX/2.
IF(ANGLE.EO.0.) GO TO 20
FLO=FLO+Y*TAN(ANGLE*.*01745329)

20 RETURN
END

C* FUNCTION OMULTI
C
C COMPUTE THE SINGLE INTEGRAL S F(Y) DY
C

FUNCTION GMULTI(FCTAABBFXPAPMM)
DIMENSION X(1)PA(1)
Hl=(E4B-AA)/2.
G1=(BB+AA)/2.
01~=0.
DO 4 I=lMM
UI=Hl*X(I )+G1
AM=HI*A( I)

4 01-'Q1+AI*FCT(UI)
0MULT1=Q1
RETURN
END

C* FUNCTION FCT
C
C COMPUTE F(Y) WHICH IS REQUIRED BY OMULT1
C

FUNCTION FCT(Y)
COMMON /DETOR/ CENTERYANGLEPBETAX
X=CENTER
IF(ANGLE.E.O..) GO TO 30
X =X + Y*TAN(ANGLE * .01745329)

30 Xl =X + DETAX/2.
X2 -X - BETAX/2.
FCT FCN(XlPY) - FCN(X2pY)
RETURN
END

C* SUBROUTINE GL016'
C
C PREPARE COEFFICIENTS OF THE 16-POINT GAUSS-LEGENDRE FORMULA
C

SUBROUTINE GL016(XAPCPD)
DOUBLE PRECISION CpDpX(l)vA(1)vXXCB)rAA(8)
DATA XX/
I .9894009349916499325961541734D0
& * 9445750230732325760779684 155D0
z * 86363 12023878317438804678977D0
&.7554044083550030338951011948D0

A .6178762444026437484466717640D0
I *4580167776572273863424194429D0 p
Z #2816035507792589132304605014D0
I *9501250983763744018531933542D-1/
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DATA AA/

I.2715245941175409485178057245D-lp
,6225352393864789286284383699D-1I

& *9515851168249278480992510760D-1,
A 1246289712555338720524762821D0 v
A -1495959888165767320815017305D0 ,
Z *1691565193950025381893120790DO v
t a 1826034150449235888667636679D0 t
I *1894506104550684962853967232D0

DMC = *5DO* (D-C)
DPC - 5DO*(D+C)
DO 2 I=lB
NI = 17-I
X(I) = -DMC*XX(I) + DPC
X(NI) = DMC*XX(I) + DPC
A(I) = DMC*AA(I)

2 A(NI) = DMC*AA(I)
RETURN
END
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C* MAIN CSOMC8
C
C --- DESCRIPTION?
C THIS PROGRAM IS A MONTE-CARLO SIMULATION OF THE INTENSITY AND ANGU
C LAR LOCATION ESTIMATION OF CLOSELY SPACED OPTICAL TARGETS.
C A SET OF ARTIFICIAL OBSERVATIONS ARE FIRST GENERATED FOR A GIVEN
C CONFIGURATION (NO. OF TARGETS. INTENSITIES AND LOCATIONS).
C USING THESE DATA AND ASSUMING NO. OF CSO'S, A GAUSI-NEWTON ALGORI
C THM IS EMPLOYED TO SEARCH FOR THE PARAMETER SET WHICH MAXIMUMS THE
C LIKELIHOOD FlJNCTION.
C THE MEANS AND VARIANCES OF THE ESTIMATES ARE ALSO COMPUTED.
C AKAIKE INFORMATION CRITERION IS COMPUTED FOR VARIOUS MODELS.
C
C

INTEGER ICOUNT(5)
REAL*4 AMP(4),THETA(4).X(6),S(64),SDOT(512)
REAL*4 XBAR(20),XVAR(20)PAML(100,5),DUM(8),TH(10),FILEN(3)
COMMON /DATA/Y(64) ,NSrSTD /SAMPLE/BTPDT /WORK/SDOT
COMMON /SPLINE/ TBEGINTDELTANPOINTARG(1024),VALI(1024),VAL2(102
I 4),SPLINI(1024t3),SPLIN2(1024v3)
WRITE(6v10)
WRITE(6r20)

10 FORMAT(/5XP'***** RESULTS FROM CSOMCS ***)
20 FORMAT(1OXP'CSO MONTE CARLO SIMULATION')

WRITE(6P30)
30 FORMAT(14XP'WGN (STD UNKNOWN)')
C
C READ IN STANDARD PULSE SHAPE FROM THE FILE WHICH HAS BEEN CREATED BY
C PROGRAM TABLE.
C

READ(B.50) FILENTBEGINTDELTAtNPOINT
DO 40 I=1,NPOINT
READ(B,60) ARO(I)PVALI(I) ,VAL2(IhC(SPLIN1(IJ).J-l.3)'
1 (SPLIN2(IvJ)vJ-1,3)

40 CONTINUE
50 FORMAT(3A4v2E1497rIp6)
60 FORMAT(9EI4.7)

WRITE(6,70) FILEN
70 FORMAT(/12XP'FILE NAME?'93A4/)
C WRITE(6p*) TBEGINPTDELTAPNPoINT
C DO 12 I-1,NPOINT
C WRITE(6,13) TARG(I),VAL1(1),VAL2(1),(SPLIN1(IJ),Ju1,3),
C I(SPLIN2(r.j)PJ-l1 3)
C13 FORMAT(l~vl5,9El2*4)
C12 CONTINUE

WRITE(t~sSO)
so FORMAT(IX'ENTER THE PENALTY CONSTANT OF AIC')

READ(5p*) ETA
WRITE(6p90) ETA

90 FORMAT(2XPF5*2)
IJRITE(6, 140)

140 FORMAT(' ENTER SEED FOR RANDOM NUMBER GENERATOR')
READ(5t*) IX
WRITE(6,150) IX

150 FORMAT(3X,19)
WRITE(6, 160)

160 FORMAT(IXP'ENTER NO. OF MONTE-CARLO LOOPS')
READ(5p*) NLOOP
WRITE(6,170) NLOOP

170 FORMAT(3XP14)
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WRITE(dr180)
190 FORMAT(' ENTER DATA TO GENERATE ARTIFICIAL SIGNAL:'/

1 5X,'NTPNSDELTAAMP(NT),THETA(NT),9TD')
READ(3,2) NTONSDT,(ANP(I),IulNTO),(THETA(I),IUIN4TQ)PSTD
WRITE(6P190) NTOiNS.DTP(AMPCI),I-ltNT0)Y (THETA(I) vImluNTO)v9TD

190 FORMAT(1X,13p15p9FS*2)
DTa-(NS-1 )*DT/2.
NM-NTO+ I
NM2O0
DO 200 I=19NM

200 N112-NM2+I*2
DO 210 ImlNM2
XBAR(I)=.0

210 X'JAR(I)-0.
NM1-NM41
DO 220 I-1,NMI

220 ICOUNT(I)-0
EPS-1 .E-5
LIMIT.50
I TRL-50

C
C SIMULATE NOISELESS OBSERVATIONS
C

CALL SSDOT(NTOgAMPPTHETASSDOTNSPO)
WRITE(6v230)

230 FORMAT(/' ESTIMATION STARTS1'
DO 400 NL-1,NLOOP
WRITE(69240) NLPIX

240 FORMAT(/lX,'NLDOP-',14,5X,'IXin'I10l)
C
C SIMULATE ARTIFICIAL NOISY DATA
C

DO 250 I-lpNS
S?4EAN - 5(I)
CALL GAUSS( IXPSTDFSMEANPY(I))

250 CONTINUE
C
C COMPUTE 980 AND AIC FOR NTwO
C

SSGNO0.
DO 260 I-lvNS

260 SSONuSSON-Y (I ) *2
c
C VARIANCE OF THE NOISE IS UNKNOWN
C

AIC.NS$ALOO( -SSGN/NS)

C '".KIANCE OF THE NOISE IS KNOWN
C AIC=-SSGN/STD**2
C

WRITEC6p27O) SSONAIC
270 FORMAT(lX,'SSGNm'iiEl5.6e5X,'AlCw',E15.6)
C
C APPLY THE AIC PROCEDURE
C

NTil
290 N=NT*2

WRITE(6e290) NT
290 FORMAT(12.'-TAROET MODELt')

CALL IC(XPNPSSOPIXPITRL)
WRITE(6,300) C X)eIulpN)

300 FORMAT(IXP'ICI PSE12.4)
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C
C USE D**2 FOR A 80 THAT 3 1S NOT CONSTRAINED TO BE POSITIVE
C

DO 310 IwlpNT
310 X(I)uSORT(X(l))

CALL ONEWT (XPNPSSQPEPSPLINITPXTER.IER)

C RESTORE AuD*82
C

DO 320 X-lrNT
320 X(X)-X(I)**2

CALL ORDER(X#N)
WRITEC6933O) (X(I),I.1pN)

330 FORMAT(2X, 'ESTIMATED PARAMETERS?' v8E12o4)
C
C VARIANCE IS UNKNOWN
C

AICNT-NS*ALOO(-SSO/NS) + ETA*(2*NT)
C
C VARIANCE 1S KNOWN
C AICNT--SSO/STD**2 + ETA*(2*NT)
C

WRITE(6p340) SSOPAICNTITER
340 FORMAT(2Xv'SSG- ',E14.6,5X,'AICu'.E14.6,5XP'ITER.-',I4)

IF(AICNT *GE. AIC) GOTO 360
AIC-AICNT
DO 350 11urN

350 DUM(I)-X(I)
NT-NT+l
IF (NT .GT. NM) GO TO 360
0O TO 290

C UPDATE THE COUNTER
C
360 ICOUNT(NT) - ICOUNT(NT) +1

IF(NT .EO. 1) 00 TO 400
C
C KEEP DATA FOR COMPUTING SAMPLE MEAN AND VARIANCE OF THE
C ESTIMATED PARAMETERS
C

KOO
DO 370 Iw2vNT

370 K*K+(I-2)*2
Nu(NT-1 )*2
DO 380 Iu1,N
XDAR(K+I)-XBAR(K+1)+DUM(I)

380 XVAR(K+I)wXVAR(K+I)+DUMCI)**2
400 CONTINUE
C
C COMPUTE AND OUTPUT SIMULATION STATISTICS
C

WRITE (6,410)
410 FORMAT(///IX'STATI9TICS')

NT-O
&JRITEC6t420)

420 FORMAT(2XP'0-TARGRT MODEL?')
PCTol00.SICOUNT(1I)/FLOAT(NLOOP)
WIJRTE(6p440) NTPPCT
KnO
DO 490 NTwlrNM
NwNT*2
WRITE(6t430) NT

430 FORMAT(/IXt12, '-TARGET MODEL?')



COUNTaFLOAT(ICOUNT(NT+1))
PCTaCOUNT/NLOOP*100.
WRITE(6t440) NTPPCT

440 FORMAT(3XP'PROS(',Ilp')-',F6.2p'Z')
IF(PCT.EQ.0.) GO TO 480
DO 450 ImlIN
IlK+I
X9AR(I1)-XBAR(I1)/COUNT
XVAR(I1)-(XVAR(I1)-COUNT*XBAR(Ii)**2)/COUNT

450 XVAR(I1)-SQRT(XVAR(I1))
WRITE(6o460) (XBAR(K+I)pI-1N)

460 FORMAT(3Xv'MEAN:'pS(1XpE12.4))
WRITE(6,470) (XVAR(K+I)vIwlN)

470 FORMAT(3XP'STD$ ',6(1XpE12#4))
480 KaK+N
490 CONTINUE

CALL EXIT
END

CS SUBROUTINE ONEW
C

SUBROUTINE ONEWT(XPNPXJEPSPLIMITPICONTPIER)
C
C THIS SUBROUTINE IMPLEMENTS QUASI-NEWTON METHOD TO FIND A MAXIMUM OF
C A FUNCTION.
C X: INITIAL QUES•(INPUT)l LOCATION OF MAXIMUM(OUTPUT)
C N: DIMENSION OF X
C XJ: VALUE OF MAXIiUN "UTPUT)
C EPS: SMALLEST INCREMENT USED IN CONVERGENCE TEST
C LIMIT: MAXIMUM NUMBER OF ITERATIONS
C ICONTI NUMBER OF ITERATIONS
C IER! ERROR CODE
C REQUIRES A SUBROUTINE JFCN(XPNFXJPDJ) WHERE
C XI ANY POINT IN THE PARAMETER SPACE
C N: DIMENSION OF X AND DJ
C XJ: VALUE OF THE FUNCTION AT X (OUTPUT)
C DJ GRADIENT EVALUATED AT X (OUTPUT)
C

DIMENSION X(1)vDJ(B)rDJI(8),XI(8)
DIMENSION B(9vS)rBI(SS)vFJ(51)rFX(51r8)
COMMON/MAINI/NDIM/INOUT/KINPKOUT
COMMON/PARAM/SBDSvDSMpIOUT

C
C MAX(N)uS8 FJ(LIMIT+I)v FX(LIMIT+IPN)
C /MAIN1/ AND /INOUT/ ARE LINKED TO OMINY SUB.
C

NDIM - 8
KIN - 5
KOUT a 6

C
C FOLLOWING CONSTANTS ARE USED TO CONTROL NUMERICAL PROCEDURES OF ONEW
C St INITIALIZATION PERTURBATION
C DS? INCREMENT USED WHEN NOT NEAR A MAXIMUM
C DSMB LARGEST INCREMENT ALLOWED
C IOUTmPRINTOUT CONTROL
C

IOUT-I
s8.005
DS.15
DBM..5
IER w 0
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DO 10 I-lpN
10 FX(lI)uX(I)

CALL JFCN(XNPXJOPDJ)
FJ( 1 )XJO
IF(IOUT.GEo1) IJRITE(6t20) XJO

20 FORNAT(lX,'SS600-¼E13.6)
C
C INITIALIZE B
C

DO 40 Iu1,N
DO 30 JinlN

30 X1(J) -X(J)
XI(I) X(I) + S
CALL JFCN(X1,NtXJtDJ1)
DO 40 J-iN

40 BI(JI) - (DJI(J)-DJ(J))/g
CALL GNINV(NPNPDIPBPMR,1)
IF(MRoLT.Ný GO TO 60
DO 50 1-19N
DO 50 J-1,N

50 B(IPJ) - -B(IPJ)
GO TO 100

C
C ALTERNATE INITIALIZATION
C
60 Dm - 0.

DO 70 Iin1,N
70 Dim w Dim + DJ(I)**2

Dim - 9/SORT(DJM)
DO 90 Iu1,N
DO 80 JinlN

s0 B(IPJ) - 0.
90 B(irr) - Dim
C
C ITERATE TO SOLUTION
C
100 DO 130 ICONT-IvLIMIT

CALL ITERAT(XutBDJtXJtDXNPNvIR)
ICONTlwICONT+l
FJ( ICONTi )-XJ
DO 110 IilrN

110 FX(ICONT1,I)uX(I)
IF(IOUTGE.3) WRrTE(6pl20) ICOUNTtXJ,(X(I)tlm1,N)

120 FORMAT(1Xtl4,2El2.4,4E12.4/(29Xt4E12,4))
IF(IR.NE.0) GO TO 150
IF(DXN.LT#EPS) GO TO 190

130 CONTINUE
IF(IOUT.OE.1) WRITE(dP140) LIMIT
IER - 2

140 FORMAT(2XP.'NO CONVERGENCE IN'p14,' ITERATIONS')
GO TO 160

150 IERU3
160 XJ.FJ(1)

KMAX1l
DO 170 I-2PICONTI
IF(FJ(I).LE#XJ) GO TO 170
XJ-FJ(X)
KMAX-I

170 CONTINUE
DO 180 I11,N

190 X(I)mFX(KHAXI)
RETURN
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190 IF(XJ.GE*XJ0) RETURN
IER - 1
IF(IOUT.GEol) kIRITE(6t200)

200 FORMAT(1X'NOT GLOBAL MAXIMUM')
RETURN
END

C* SUBROUTINE ITERAT

CCALLED BY ONEW

C
SUBROUTINE ITERAT(XvBFPXJPDXNPNPIR)
DIMENSION X(1),B(SS)vF(1),DF(8),DX(S),DF(S),DXB(S)
COMMON/PARAM/SpDSrDSM. lOUT /SAMPLE/BT
I R0
DXN - 0.
DO 20 ImlN
DX(I) - 0.
DO 10 J-1,N

10 DX(I) - DXCI) + B(IJ)*F(J)
20 DXN - DXN + DX(I)**2

DXN - SGRT(DXN)~
IF(DXN.LE*DSM) 0O TO 50

C
C INCREMENT TaOO BIG

DO 30 I-1,N
30 DX(I) - DX(I)*DSM/DXN

DXN - DSM
IF(IOUT*OE.3) WRITE(6#40)

40 FORMAT(' INCREMENT TOO BIG')
C
C CHECK FOR CORRECT MOTION
C
50 XDFO- .

DO 60 I-1,N
60 XDF - XDF + DX(I)*F(I)

IF(XDF.OT.0.) GO TO 100
C
C MOTION IN WRONG DIRECTION# CHANGE TO THE DIRECTION OF GRADIENT
C

IF(IOUT*GE.3) WRITE(6970)
70 FORMAT(' NEAR MINIMUM')

FM wO.
DO 80 IwliN

so FM w FM + F(I)**2
DXN - DS
FM a DS/SORT(FM)
DO 90 I-1,N

90 DXCI) a FM*F(I)
100 DO 110 I1,iN
110 XI) - XI) + Dx(I)
C
C CONSTRAINT THE TARGET POSITIONS WITHIN THE RANGE (DTP-BT)
C

NTI-N/2+1
I FLAG-a
DO 120 I-NTlN
ABSX.ABS(XCI))
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IF(ABSX.LE.-DT) GO TO 120
IFLAGI
SIGNXX( I )/ADSX
TENP--SIGNX*DT
DX( I)-DX(I)+TEIIP-X(I)
X(I).TEMP

120 CONTINUE
IF(IFLAG.EO.0) 00 TO 150
DXN-0.
DO 130 I-lN

130 DXN-DXN+DX( I )**2
IF(DXN.NE.0.) GO TO 140
I Rinl
XJ--1 .E75
RETURN

140 DXN-SQRT(DXN)
150 CALL JFCN(XNvXJpDF)

DO 160 IulN
DF(I) - DF(I) - F(I)

160 F(I) - DFCI) + F(I)
DO 170 IlN
BF(I) - 0.
DXB(I) 0.
DO 170 J-lN
BF(I) - BF(X) 4 D(I�J)*DF(J)

170 DXD(I) - DXD(I) + DX(J)*D(JI)
Al - 0.
DO 190 I=lN

190 Al - Al + DX(I)*DF(I)
IF(AI.NE,0.) GO TO 190
I RW2
RETURN

190 Al 1./Al
DO 200 IulN
DO 200 J-lN

200 B(IJ) * D(IJ) - AI*(DF(I)+DX(I))*DXB(J)
IF(IOUT.GE.4) URITE(6,210) ((D(JI),I-lN),J.IpN)

210 FORNAT(2E20.4)
RETURN
END

SUBROUTINE GAUSS
C
C GENERATE GAUSSIAN DISTP!urION RANDOM NOISE
C

SUBROUTI� uAUSS(IXS�ANV)

L'U 10 1-1,12
CALL RANDU'IXIyy)
IX-IY

10 AA+Y
V - (A-6.0) *8 4AM
RETURN
END
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C* SUBROUTINE JFCN
C
C coilPurE J(X) AND ITS GRADIENTS
C
C

SUBROUTINE JFCN (XPNP99ODJ)
DIMENSION AMP(4),THETA(4),X(1),DJ(l),S(64),BDOT(512)
COMMON /DATA/ Y(64)PNSoSTD /WORK/SDOTPS
NT-N/2
DO 10 K1,PNT
AMP(K)mX(K)**2

10 THETA(K)-X(K+NT)
CALL SSDOT (NTiAMPPTHETArSvSDOTPN6,1)
ssQ-0.
DO 20 JL-1.NS
BML - Y(JL) -S(JL)
SSG- SSG-BML**2

20 CONTINUE
DO 40 1R1,rN
SUMmO.
DO 30 JL-lpNS
NN=N*(JL-1) + IR
BML -Y(JL) -S(JL)
SUM-SUM+SDOT CNN) *BML

30 CONTINUE
C
C VARIANCE IS UNKNOWN
C

DJ( IR)--SUM/SSG*NS
C
C VARIANCE IS KNOWN
C
C DJC (IR) =SUM/STD**------
40 CONTINUE_

-~END

C* SUBROUTINE ORDER
C
C ARRANGE THE ORDER OF THE TARGETS ACCORDING TO THEIR IN-SCAN POSITIONS
C

SUBROUTINE ORDER(XPN)
DIMENSION X(1)
NT-N/2
IF(NT.LE.1) RETURN
I1=NT+l
12-N-1
DO 20 I=11,12
J1=I+1
DO 10 J=JIPN
IF(X(J).LE*X(I)) GO TO 10
TEMP=X(I)
X(I)=X(J)
X(J)-TEMP
TEMP=X(I-NT)
X(I-NT)-X(J-NT)
X(J-NT)-TEMP

10 CONTINUE
20 CONTINUE

RETURN
END
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C* SUBROUTINE IC

F PROVIDE INITIAL GUESS FOR ONEW
C

SUBROUTINE IC(XvNPSSOIpixoTRL)
DIMENSION X(1)iS(64)rSDOT(512)rYl(64)
COMMON /SAMPLE/BT /WORK/SDOTS /DATA/Y(64)PNS
NT-N/2
AL-ST
AU--BT
IF(NT.NE.1) 00 TO 20
XJO-1 .E75
DO 10 I-1tNS

10 Y1(I)MY(I)
6O TO 50

20 XJO=-SSG
NT1=NT-i
CALL SSDOT(NTlvX(1),X(NT)PSPSDOTPNSiO)
DO 30 I-1pNS

30 Y1(I)-Y(I)-S(I)

40 D401=iNTl .

56 IFLAG-0
DO 90 K-1,ITRL
CALL RANDU(IXPIYFY)
IX I Y
THETA-AL+ (AU-AL) *FY
CALL SSDOT(lvl*PTHETAPSPSDOTPNSP0)
SUMIO0.
DO 60 I-1,NS

60 SUM1-SUM1+S(I)**2
SUM2-0.
DO 70 I-1,NS

70 SUM2=SUH2+S( I)*Y1(I)
AMP=SUM2/SUM 1
IF(AMP.LT*19E-6) AMP-1.E-6
XJ-o.
DO 60 r-iNS

60 XJ=XJI+(Yl(I)-SCI)*AMP)**2
IF(XJ.GE.XJO) 6O TO 90
IFLAG-1
X(NT)-AMP
X (NT*2 ) THETA
xJ0-XJ

90 CONTINUE
IF(IFLAG*EVn.1) 0O TO 100
XC NT ) -. E-6
X(NT*2)=0.

100 RETURN
END

C* SUBROUTINE SSDOT
C
C COMPUTE S(T) AND ITS DERIVATIVE AT NS INSTANTS
C
C

SUBROUTINE SSDOT(NTrAMPvTHETASvS DOTvNSfIFLAG)
REAL*4 SC1),SDOTE1)rAMP'%iA)vTHETA(l)
COMMON -/SAMPLE/BTPDT
COMMON /SPLINE/ TBEGINTDELTANPOINTARG(1024)PVAL1(1024)o,

1 VAL2(1024)PSPLIN1(1024t3)PSPLIN2(1024,3)
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C
C IF IFLAGwOp SDOT IS NOT COMPUTED
C

IF(NT*EO.O" O0 TO 20
N - NT*2
DO 10 I-1pNS
S(I) -0.
I1 - (1-1) * N
TIUBT+(I-i)*DT
DO 10 K-INT
T -TI - THETA(K)
KT IFIX((T-TBEOIN)/TDELTA) + 1
D T-ARG(KT)
Si C((SPLINI(KT,3) * D + SPLINI(KT,2))

1 *D + SPLIN1(KT,1)) * D + VALI(KT)
S(I) = S(I) + SI*AMP(K)
IF(IFLAO .EQ. 0) GO TO 10
K1I11 + K

C
C SDOT(K1) IS THE DERIVATIVE OF S WoRsTs B INSTEAD OF A. A-B**2
C

SDOT(KI) = Si * 2.*SORT(AMP(K))
K2 - K1+NT
S2 - ((SPLIN2(KT,3)*D + SPLIN2(KT,?))

1 *D + SPLIN2(KT,1)) *D+ VAL2(KT)
SDOT(K2) -- AMP(K)*S2

10 CONTINUE
RETURN

20 NM=NT*2*NS
DO 30 I=INS

30 S(I) 0.
DO 40 I=INM

40 SDOT(I)= 0.
RETURN
END

C* SUBROUTINE GMINV
C
C MATRIX INVERSION ROUTINE
C
C

SUBROUTINE GMINV(NRNC,AU,NRMT)
C
C MATRIX INVERSION ROUTINE-
C INPUT
C NRNC =ROW AND COLUMN DIMENo OF A
C A -MATRIX TO BE INVERTED
C MT w PRINT CONTROL VARIABLE
C OUTPUT
C U - GENERALIZED INVERSE OF A
C MR - RANK OF U
C

EXTERNAL DOT
DIMENSION A(1),U(1)vS(30)
COMMON/MAIN1/NDIM
COMMON/INOUT/KINPKOUT
NDIM1 - NDIM+1
TOL - 1.E-14
ADV m 1#E-24
MR - NC
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NRM1 = NR-1
TOLl w 0.
JJ = 1
DO 10 J=IiNC
S(J) m DOT(NRA(JJ),A(JJ))
IF (S(J) .GTs TOLl) TOL1wS(J)

10 J JJ +NDIM
JTOLl - ADV* TOLI
ADV - TOLl
JJ- 1
DO 100 J-1,NC
FAC - S(J)
Jill -J-1
JRM -JJ+NRM1
JCM = *JJ+JMI
DO 20 I-JJPJCM

20 U(I) 0 0.
U(JCM)= .0
IF( J .ED. 1) GO TO 54
KK-1
DO 30 KliJM1
IF (S(K) .EO. 1.0) 00 TO 30
TEMP= -DOT(NRA(JJ),A(KK))
CALL VADD(KPTEMPU(JJ),U(KK))

30 KK-KK+NDIM
DO 50 L1IP2
KK-1
DO 50 K1,PJM1
IF (S(K) .ED. 0.) 00 TO 50
TEMP =-DOT(NRA(JJ),A(KK))
CALL VADD(NRPTEMPPA(JJ),A(KK))
CALL VADD(KPTEMPFU(JJ)FU(KK))

50 KK = KK+NDIM
TOLl =TOL *FAC+ADV
FAC -DOT(NRPA(JJ),A(JJ))

54 IF (FAC .GT. TOLl) GOT 0 70
DO 55 I-JJPJRM

55 A(I) -0.
S(J) =0.
KK - 1
DO 65 K-lrJMl
IF (S(K) .EO. 0.) GO TO 65
TEMP --DOT(KPU(KK),U(JJ))
CALL VADD (NRPTEMPA(JJ),A(KK))

65 KK -KK+NDIM
FAC -DOT(JPU(JJ)PU(JJ*))
MR -MR-1
GO TO 75

70 9(J) -1.0
KK-1
DO 72 KlIPJMI
IF (S(K) *ED* lo) 00 TO 72
TEMP- -DOT(NRPA(JJ),A(KK))
CALL VADD(KPTEMPPU(JJ)#U(KK))

72 KK'-KK+NDIM
75 FAC ml./SGRT(FAC)

DO 80 I-JJPJRM
s0 A(I) w A(I) * FAC

DO 95 !UJJtJCM
85 U(I)mU(I)*FAC
100 JJ-JJ+NDIM

IF (MR .ED# NR #OR* MRsEG.'4K. 00 TO 120
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IF (MT *NE* 0)WRITE(KOUTP11O)NR#NCPMR
110 FORMlAT(13*IHXvI298H M: RANKiI2)
120 NEND *NC*NDIM

JJ- 1
DO 135 J-1vNC
DO 125 I-lpNR
11-1-J
S(I)wo.
DO 125 KKnJJPNENDPNDIM

125 S(I)mS(I)+A(II+KK)*U(KK)
Il-J
DO 130 IwlNR
U(II)=S(I)

130 II-II+NDIN
135 JJmJJ+NDIM1

RETURN
END

C
C

SUBROUTINE VADD(NvC1,ArB)
C INPUT 2
C N - ARRAY DIMENSION
C Cl - SCALAR
C A - NX1 CECTOR
C B - NX1 VECTOR
C OUTPUT 2
C A = NXI VECTOR SUM

DIMENSION A(1)PB(1)
DO i1-1inlN

1 A(I) mA(I) +CI*B(l)
RETURN
END

FUNCTION DOT(NRpArB)
C INPUT 2
C NR =ARRAY DIMENSION
C A -NRXI VECTOR
C B -NR X! VECTOR

DIMENSION A(I)iB(1)
DOT -0.
DO I I-1vNR

1 DOT-DOT + ACI)*B(I)
RETURN
END
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